

PISA, 8-10 MAY 2018

WORKSHOP "SMALL AREA METHODS AND LIVING CONDITIONS INDICATORS IN EUROPEAN POVERTY STUDIES IN THE ERA OF DATA DELUGE AND BIG DATA"

WORKSHOP "SMALL AREA METHODS AND LIVING CONDITIONS INDICATORS IN EUROPEAN POVERTY STUDIES IN THE ERA OF DATA DELUGE AND BIG DATA"

Table 2. Multidimensional poverty at a local level – how to synthetize

the dimensions?

Pisa, May the 8th 2018

Coordinator: Achille Lemmi

Poverty: Cross-sectional, multidimensional, longitudinal, longitudinal

and multidimensional

A presenter: Vijay Verma

1 Poverty and deprivation – a matter of degree Monetary deprivation

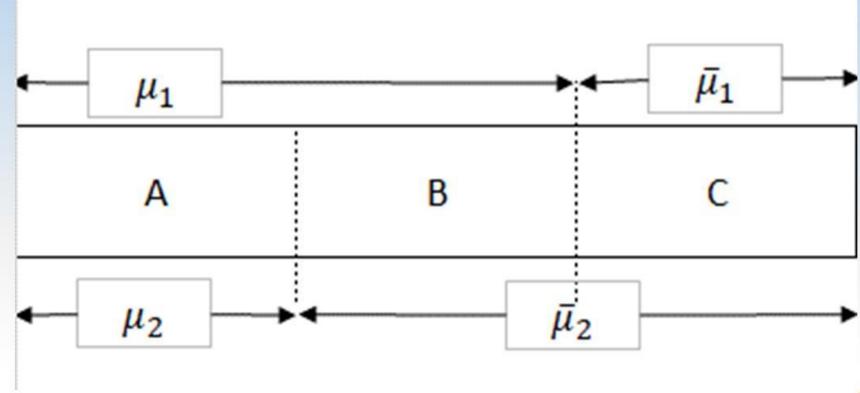
$$\mu_{i,K} = \left(\frac{\sum_{\gamma=i+1}^{n} w_{\gamma} \mid X_{\gamma} > X_{i}}{\sum_{\gamma=2}^{n} w_{\gamma} \mid X_{\gamma} > X_{1}}\right)^{\alpha_{K}-1} \left(\frac{\sum_{\gamma=i+1}^{n} w_{\gamma} X_{\gamma} \mid X_{\gamma} > X_{i}}{\sum_{\gamma=2}^{n} w_{\gamma} X_{\gamma} \mid X_{\gamma} > X_{1}}\right)$$

$$i:1,...,n-1; \mu_{n,k}=0$$

2 Poverty and deprivation – a matter of degree: Non-monetary ('supplementary') deprivation

- 1. Identification of items of deprivation to be included in the analysis;
- 2. Transformation of the items into the [0, 1] interval;
- 3. Exploratory and confirmatory factor analysis to identify dimensions of deprivation;
- 4. Calculation of weights within each dimension (each group);
- 5. Calculation of scores for each dimension;
- 6. Calculation of an overall score and the parameter α of Eq. (1);
- 7. Construction of the fuzzy deprivation measures, both overall and separately in each dimension.

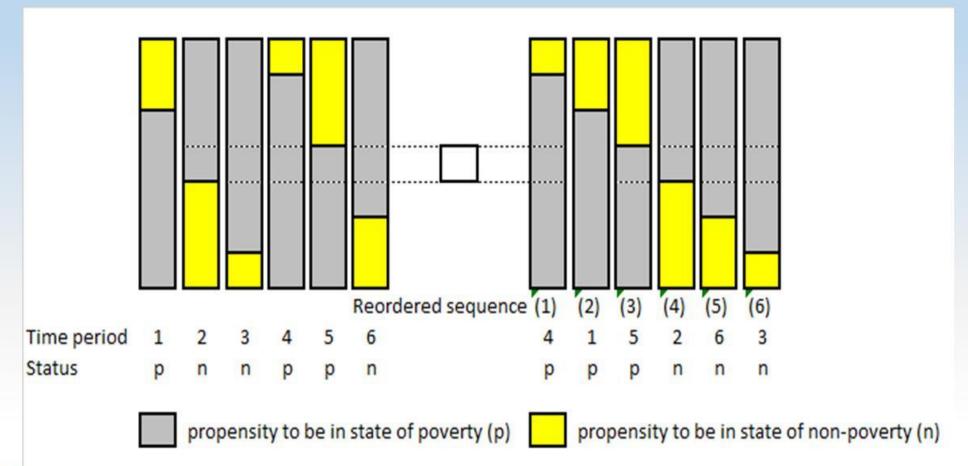
3 Constructing multidimensional / longitudinal measures: Intersection of dimensions or times



4 Four sequences defined by intersection of propensities in two dimensions / time points

Intersectio n	Area in Figure	Propensity	Fuzzy operation	Propensity using ordered
				$\mu_{(1)} \geq \mu_{(2)} \geq \cdots$
(1)	Α	$\min[\overline{\omega}](\mu_1,\mu_2)$	Standard	$\mu_{(2)}$
$\mu_1 \cap \mu_2$				
(2)	$nax^{[n]}(0,B)$	$\max\bigl(0,\mu_1+\overline{\mu}_2-1\bigr)$	Bounded	together=
$\mu_1 \cap \bar{\mu}_2$		$= \max[0](0, \mu_1 - \mu_2)$		$\mu_{(1)} - \mu_{(2)}$
(3)	$\max_{B}(0,B)$	$\max \bigl(0, \overline{\mu}_1 + \mu_2 - 1\bigr)$	Bounded	(1)
$\overline{\mu}_1 \cap \mu_2$		$= \max[0] (0, \mu_2 - \mu_1)$		
(4)	С	$\min(\bar{\mu}_1, \bar{\mu}_2)$	Standard	$1 - \mu_{(1)}$
$\bar{\mu}_1 \cap \bar{\mu}_2$		$= 1 - \max[\omega](\mu_1, \mu_2)$		
(5)	A+B	$\max[0](\mu_1, \mu_2)$	Standard	$\mu_{(1)}$
$\mu_1 \cup \mu_2$				

5 Many dimensions (multi-dimensional), many time periods (longitudinal)



6 Intersection

$$m_P = \min(\mu_t, t \in X_P)$$

$$\overline{m}_N = \min(\overline{\mu}_t, t \in X_N)$$

$$M_N = 1 - \overline{m}_N = \max(\mu_t, t \in X_N)$$

OVERLAP =

$$\max (0, m_P + \overline{m}_N - 1) = \max (0, m_P - M_N)$$

7 Examples of movements between the states of poverty and non-poverty

pattern	description	$\mu^L =$	
pnp	Temporary exit from	$max(0, min(\mu_1, \mu_3) - \mu_2)$	
	poverty: poor at time 1,		
	non-poor at 2, again poor		
	at 3		
npn	Temporary fall into	$max(0,\mu_2 - max(\mu_1,\mu_3))$	
	poverty: non-poor at		
	time 1, poor at 2, again		
	non-poor at 3		
Persistent	Poor for at least P years	$\mu_{(P)}$	
poverty	during a period of T years		